Ксоня та алфавітне коло
Ксоня вивчає англійський алфавіт. Вона вважає рядок алфавітним
, якщо всі літери в ньому — послідовні в алфавіті.
Наприклад, рядки «abc
», «xy
», «fg
» — алфавітні, а «adef
», «zxc
», «zab
» — ні.
У Ксоні є коло, на якому написані літери. Ксоня хоче знайти на цьому колі найдовший алфавітний рядок і сказати його довжину.
Рядок належить колу, якщо всі його символи сусідні в колі. У колі сусідні символи під номерами та , та , , та , та . Наприклад, рядок «abc
» належить колу «bcda
», а рядок «bda
» — не належить.
Вхідні дані
Перший рядок містить одне ціле число () — довжина кола.
Другий рядок містить один рядок з маленьких латинських літер довжиною — коло з літерами.
Вихідні дані
Виведіть одне число — довжину найдовшого алфавітного рядка, який належить колу.
Приклади
Примітка
Коментар до першого тесту:
Рядок «abcd
» підходить (індекси 4, 1, 2, 3 сусідні) і він найдовший.
Коментар до другого тесту:
Серед усіх алфавітних рядків з однієї літери, рядок «a
» — найменший.
Коментар до третього тесту:
Серед алфавітних рядків, рядок «mnop
» — найдовший.
Весь англійський алфавіт в один рядок:
«abcdefghijklmnopqrstuvwxyz
».
Оцінювання
балів отримають рішення, які правильно працюють у випадку, якщо найдовший алфавітний рядок належить саме рядку з вхідних даних, а не колу.